2024年12月24日 星期二

閱讀美國《晶片與科學法案》(CHIPS and Science Act) - 法案摘要全文翻譯

本篇文章翻譯並整理了美國《晶片與科學法案》(CHIPS and Science Act)的法案摘要全文。根據先前媒體的報導,我們可以得知,美國藉由這項法案,對外國(特別是中國大陸)設下多重門檻,同時對選擇在美國投資的半導體產業提供了大力支持。然而,仔細閱讀法案內容後發現,這項法案涵蓋的面向遠不止如此,顯示出其全面且長遠的規劃。

這項法案由多個機構共同主持與執行,包括:能源部(DOE)科學辦公室、國家標準與技術研究院(NIST)、國家科學基金會(NSF)、科學與技術政策辦公室(OSTP),以及美國國家航空暨太空總署(NASA)。總結來說,《晶片與科學法案》旨在全方位提升美國在科學技術領域的領導地位,以確保美國在未來全球競爭中的核心優勢。

能源部(DOE)
DOE負責的主要任務包括:
  • 半導體相關的基礎與應用研究,如先進光子源、散裂中子源與高級光源等。
  • 前沿計算與量子技術,包括分散式量子計算和量子通信。
  • 核融合與核能技術的研究與開發。
  • 推動全美清潔能源科技創新與應用。

國家標準與技術研究院(NIST)
NIST的主要任務在於:
  • 測量與標準:支援半導體製造、材料科學及其他關鍵技術的計量學標準。
  • 供應鏈安全:促進全球半導體供應鏈的透明度與韌性。
  • 量子與人工智慧標準:推動量子技術與人工智慧的標準化。
  • 支持中小企業參與尖端科技研究與開發活動,推動技術轉移與商業化。

國家科學基金會(NSF)
NSF的任務涵蓋:
  • 基礎與應用研究:特別是在半導體、先進計算技術、量子信息科學、清潔能源及生物技術等領域。
  • 科學教育與訓練:推動STEM(科學、技術、工程和數學)教育的普及,確保全美更多人能參與未來科技產業,特別是在社會弱勢群體和歷史上資源匱乏的社區。
  • 科技創新與商業化:通過技術創新與合作,確保「在美國發明的技術能在美國製造」。

科學與技術政策辦公室(OSTP)
OSTP的職責包括:
  • 制定全國科技與創新策略,促進跨部門合作,以維持美國科技的全球領導地位。
  • 支持政府間科技合作與研究安全,特別是防範來自外國的不當科技干預。
  • 協調聯邦機構在高科技產業上的資源分配與政策執行。

美國國家航空暨太空總署(NASA)
NASA的任務集中於:
  • 月球到火星計畫(Moon to Mars):包括阿提米絲計畫(Artemis),推動深空探索和技術開發。
  • 地球與太空科學:支持先進望遠鏡(如Nancy Grace Roman太空望遠鏡)的開發,以及地球氣候變化研究。
  • 航空與航太科技:研發低碳航空技術,並整合無人機系統進入國家航空系統。
  • 支援人類太空飛行,並持續運營國際太空站(ISS)至2030年。

我們可以看到《晶片與科學法案》不僅著眼於強化美國半導體產業的競爭力,還涵蓋科技基礎設施建設、前沿技術研究及未來產業的全面部署。這項法案的實施,將推動科技創新、經濟增長與全美區域均衡發展,並進一步鞏固美國的全球科技領導地位。


2024年12月20日 星期五

閱讀美國《晶片與科學法案》(CHIPS and Science Act) - 簡介與白宮新聞稿

最近在閱讀《晶片戰爭》一書,書中的開頭就提到了於2022年8月9日通過的《晶片與科學法案》(CHIPS and Science Act)。該法案大幅加速了全球半導體供應鏈的分化,導致外資對中國大陸晶片產業的投資幾乎完全停滯;而在美國,該法案的通過也使得半導體業者紛紛宣布設立新廠的消息激增。這可視為美國通過國內法,憑藉其龐大的市場與技術優勢,結合「長臂管轄」(Long-Arm Jurisdiction)及「微量原則」(De Minimis U.S. Content)作為護欄的經典案例。該法案的實施確實已幾乎徹底改變了全球半導體供應鏈的格局。這使得OT更想深入閱讀法案全文,而不僅僅是看媒體上的摘要及解析。

所謂的長臂管轄(Long-Arm Jurisdiction)通常指一國在其管轄範圍之外,依據其國內法對其他國家或地區的行為進行限制或施加影響的能力。對於美國而言,這通常表現為利用美國的法律和經濟優勢,對外國企業或個人進行管轄。例如,在《晶片與科學法案》中,相關規定可能要求任何使用美國技術或設備的公司需遵守美國的出口管制,即便這些公司並非位於美國境內。而「微量原則」(De Minimis Rule),具體來說是指如果某一產品包含了少量的美國原產技術或成分,當其比例超過某個最低限額(例如 10% 或 25%)時,即便該產品是在美國境外生產,仍可能受到美國出口管制法的約束。這個限額通常根據出口的最終目的地來調整,例如對於出口至受制裁國家的產品,限制可能更為嚴格。這一規定對全球供應鏈影響深遠,特別是在半導體行業,因為美國技術、軟件和設備在全球半導體製造中占據關鍵地位,即使是含有少量美國技術的產品,也可能因此被禁止出口到某些國家或地區。

美國於2022年8月9日通過了《晶片與科學法案》(CHIPS and Science Act),旨在強化美國半導體產業的競爭力,減少對外國供應鏈的依賴。該法案投入超過520億美元,用於支持美國國內的半導體研究、發展和製造。 法案的主要內容包括:

  • 財政補助:提供390億美元的直接補助和其他獎勵措施,鼓勵企業在美國建立新的晶片製造廠。
  • 稅收抵免:提供25%的投資稅收抵免,減輕企業在美國設廠的成本負擔。
  • 限制條款:獲得補助的企業在十年內不得在中國大陸或俄羅斯等國家設立高於28奈米製程的新先進半導體工廠,以防止技術外流。 

該法案的通過引發了各方反應。支持者認為,這將有助於緩解美國國內的晶片短缺,創造高薪工作,並保障國家安全利益。然而,反對者則擔心,這可能只是圖利晶片生產商,無法達到預期效果,甚至可能引發國際間的經濟緊張。 

對台灣而言,該法案可能帶來一定的影響。台積電等台灣企業已宣布在美國進行重大投資,例如台積電在亞利桑那州投資超過650億美元,並將獲得法案下最高66億美元的補助。然而,專家認為,台灣的半導體製造生態系統非常先進,具有獨特的優勢,難以在其他地方被取代。因此,該法案不太可能掏空台灣的半導體產業。 

《晶片與科學法案》反映了美國試圖重振其半導體產業,減少對外依賴,並在全球科技競爭中保持領先地位的戰略意圖。這對全球半導體供應鏈和地緣政治格局都將產生深遠影響。


2024年12月16日 星期一

讀《以善意鋪成的地獄》 - 「如何不修補美國外交政策」

2024年11月5日美國總統大選結果底定,由已經當選過美國45屆總統的川普,挑戰成功拿下了第47屆總統,並即將在2025年1月20日就職。比起第一次當總統時的內閣安排,這次的節奏顯然明快許多。本書的第六章《如何不修補美國外交政策》,點出了作者對於川普第一次當選總統時,外交人士的安排以及走向,都很值得參考為何這次川普的人事布局,不再採用各領域的大腕,而是以忠誠度為最優先考量。我覺得本書中作者對於川普在外交政策上的觀察,也有助於我們對於川普重新執政後的外交政策理解,也解釋了為何原本想要大有作為的川普,後來卻趨於與美國傳統外交政策逐漸一致。

本圖取自:博客來

2024年11月9日 星期六

夏遊北海道 - 旭川動物園

第三天到了旭川動物園,這裡的動物照顧得非常好,因為空間大,每個動物看起來都很有活力;其中女兒最喜歡的是水豚(Capybara)了!

旭川動物園

2024年10月27日 星期日

夏遊北海道 - 富良野

早上從十勝丘公園散步回到酒店,剛好趕上大清早的熱氣球活動;岳父岳母趕了個大早,成了旅行團第一批搭上熱氣球的團員,殊不知... 其實我還去了趟十勝丘公園才回到飯店,把照片秀出來的我當下真的很「丘」呀!

可惜清晨下過雨,四周都是霧氣,視野並不好。不過搭熱氣球這種經驗,我們一家人應該都是第一次吧!

用過早餐後,一行人往富良野前進,大約也是兩個小時的車程。每次期待的就是高速公路的休息站,可以看看休息站有沒有甚麼特色食物。不過第二天因為OT清早跑去十勝丘公園拍了很多照片,還抓了寶可夢,順手佔了兩個道館(話說守道館的寶可夢們都有點弱啊...)!導致手機沒電,而且電腦前一天晚上也忘了充電,剛上車不到一小時只能哀怨地把手機開成省電模式,一整天都沒辦法工作,結果這一整天都「丘」不起來了。

說到充電這件事情,高速公路的休息站竟然沒有充電的插座,而且整趟旅程下來,不論是餐廳還是商場,這種開放給旅客的插座還真是寥寥無幾。路上跟領隊聊到這件事情,導遊是說日本人的習慣是使用者付費,所以不會有「免費的」充電插座給遊客使用,所以自然這種插座也少。

從十勝前往富良野的路上,經過大片的平原,平原的盡頭處有些丘陵;讓OT想到十幾年前跟耘媽一起去過九寨溝,當遊覽車行駛在青康藏高原時,一望無垠的高原上遠處矗立著山峰上還白雪皚皚,立即被這種大氣磅礡的景色所吸引。這次來到北海道,類似的大景也頗令人心神嚮往。

行車期間的隨手拍

2024年10月26日 星期六

IEA World Energy Investment 2024 報告閱讀 - 地區深度解析(Regional deep dive)

本篇文章OT將介紹《IEA World Energy Investment 2024》(WEI2024)報告的最後一章《Regional Deep Dive》(地區深度解析),這是WEI2023中所未涵蓋的部分。該章節分別針對美國、拉丁美洲與加勒比海、歐盟、非洲、中東、中國大陸、印度、日本與韓國、東南亞以及歐亞地區進行深入分析。透過經濟與金融指標、能源投資指標、清潔能源與化石燃料投資比例等三個面向,評估各地區邁向淨零碳排的進展與挑戰。

其中,歐盟在清潔能源推動上居全球領先地位,日本與韓國緊隨其後;儘管美國依然是全球最具影響力的經濟體,但其在清潔能源投資方面低於全球平均。中國大陸則積極致力於清潔能源轉型,顯示出達成淨零目標的決心。而逐漸富裕的中東和東南亞也在大力推動清潔能源投資。相較之下,拉丁美洲、東南亞和歐亞地區的部分國家則需要進一步努力,以縮短與全球目標的差距。

最後,非洲因經濟發展和工業化進展相對緩慢,清潔能源的起步也較為落後,是全球在淨零碳排目標上面臨的最大挑戰之一。


IEA World Energy Investment 2024

本篇文章不僅供OT自我學習使用,也歡迎轉載並註明原文出處。

2024年10月20日 星期日

夏遊北海道 - 十勝

隨著COVID-19疫情逐漸減緩,從2022年起各國紛紛重新開放國境,而日本向來是各國遊客的熱門目的地之一。對台灣人而言,除了距離近、出入境便利外,豐富的觀光資源以及日幣的貶值,也使得日本成為首選旅遊地。2023年暑假與寒假,我安排了兩次大阪與京都的自由行,這些經歷讓我更加期待即將到來的北海道之旅。

今年暑假,我與Amanda特別討論是否要帶岳父岳母一同出國旅行。這個念頭萌生於今年冬季關西之旅後,趁父母身體還健朗、行動自如,帶他們一起出遊,為全家留下珍貴的回憶。然而,隨著人數增加,行程日期的安排變得更加困難。原本我們考慮郵輪旅遊,但當所有行程敲定後,才想到船上的網路連接可能不穩定,OT如果需要處理工作可能會遇到困難。接下來,我們的第二選擇是沖繩,但考慮到暑假期間天氣不穩定,再加上當時盛傳「琉球海溝」可能會發生大地震,我們也放棄了這個選項。最終,我們決定選擇避暑之旅,往北到從未造訪過的北海道,於是便有了這次的旅行計劃。

圖片來源:北海道官方旅遊網站

2024年10月17日 星期四

快讀2024年諾貝爾經濟學獎 - 「制度如何形成及其對繁榮的影響」

2024年10月14日瑞典皇家科學院決定將2024年瑞典銀行紀念阿爾弗雷德·諾貝爾經濟科學獎授予達隆·阿西莫格魯(Daron Acemoglu)、西蒙·約翰遜(Simon Johnson)以及詹姆斯·A·羅賓森(James A. Robinson),以表彰他們「關於制度如何形成及其對繁榮影響的研究」。

看完2024年的諾貝爾經濟學獎得獎的研究,OT認為得獎者們將2024年諾貝爾經濟學獎的研究與古典經濟學中的「供給與需求」概念聯繫起來。古典經濟學強調市場如何通過供給和需求達到均衡,而得獎者的研究則進一步探討了在制度框架下,如何創造一個有利於長期經濟增長的「供給」環境。特別是,他們指出如果統治者只關注短期的「提取」(extractive institutions),也就是只剝奪資源而不建立合理的分潤機制,那麼這樣的制度最終會損害社會整體的繁榮,並導致經濟的停滯或衰弱。這與古典經濟學的供需理論有共通之處:一個健康的市場需要有合理的資源配置和回饋機制,才能長期發展。當供給端(生產者或統治者)只顧眼前利益,未考慮需求端(消費者或人民)的長期福祉時,整個經濟體系將無法持續發展。

這次得獎的研究除了對於經濟學也對於政治學有深遠影響,特別是在現代複雜的大國博弈的過程中,提供了一個如何健全社會制度思考方向。這次的得獎研究並沒有僅僅圍繞「民主」或「專制」的二元對立來討論制度的優劣,而是更深入地探討了「共享利益」的重要性。不論是民主還是專制,核心在於制度是否能夠建立起一個公平的利益分配機制,讓社會中的不同群體都能夠享有經濟和社會發展的成果。包容性制度的關鍵就在於這種利益共享的機制,它能夠促進長期的社會穩定和經濟增長。反之,掠奪性制度只會將資源集中在少數人手中,導致社會不平等的加劇和經濟的停滯。

這也可以解釋了為什麼在有些專制體制經濟上也能夠發展到令人相當矚目的成果,可能不僅僅是因為人口紅利、天然資源,也因為它們設計了有效的利益共享制度,確保經濟成果能夠惠及廣大人民。相反,如果一個民主國家沒有建立起有效的利益共享機制,經濟增長可能會受限,甚至可能面臨社會動盪。因此,制度的包容性與其是否「民主」或「專制」並不一定有直接關聯,而是取決於其是否能夠促進全社會的利益共享。這樣的觀點在中美競爭的背景下尤其具有現實意義,因為這兩個大國在如何分配經濟成果、如何建立共享利益的制度框架上都面臨著巨大的挑戰。

快讀2024年諾貝爾生理或醫學獎 - 「對基因活動調控基本原理的發現」

2024年10月7日2024年諾貝爾生理或醫學獎共同頒發給了維克托·安布羅斯(Victor Ambros)和蓋瑞·魯夫昆(Gary Ruvkun),表彰他們發現了microRNA及其在轉錄後基因調控中的作用。

兩位得獎者的發現揭示了microRNA這種微小的非編碼RNA分子,以及它們在基因後轉錄調控中的角色。他們的研究表明,這些RNA分子可以調節mRNA的穩定性和蛋白質的合成。這一發現揭開了一個全新層次的基因調控機制,與傳統的基因表達控制方式不同,microRNA通過抑制mRNA的翻譯來調控基因表達。這種調控方式在動物發育過程中至關重要,對於維持多細胞生物的正常功能也有重要影響。這一機制並不僅限於研究中的模型生物(如線蟲C. elegans),後續的研究發現,microRNA調控在動物界中廣泛存在,並且具有高度的演化保守性。例如,Ruvkun實驗室發現let-7這種microRNA在多種物種中(包括果蠅和人類)高度保守,說明這種基因調控機制對於多細胞生物的演化和正常功能至關重要。

microRNA的調控功能與多種疾病(包括癌症、糖尿病、自身免疫疾病等)密切相關。由於microRNA能夠精確地調控基因表達,當這一調控機制出現異常時,可能會導致疾病。例如,某些microRNA的突變會導致先天性聽力喪失、眼部和骨骼疾病。這項發現也為microRNA作為診斷和治療工具的應用開闢了新的途徑,推動了醫學領域的發展。Ambros和Ruvkun的研究工作揭示了一個全新的基因調控層次,這對生物學和醫學研究具有劃時代的意義。他們的發現擴展了我們對基因表達和調控的理解,並且引發了後續大量的研究,尋找更多microRNA和它們的作用機制。正是這種對基本生命過程的深刻洞見,促成了這項發現在生物學和醫學領域中的核心地位。

2024年10月15日 星期二

快讀2024年諾貝爾化學獎 - 「破解蛋白質奇妙結構的密碼」

2024年諾貝爾化學獎的一半獎金頒發給大衛·貝克,以表彰他在計算蛋白質設計方面的貢獻;另一半獎金共同授予傑米斯·哈薩比斯和約翰·M·江珀,以表彰他們在蛋白質結構預測方面的卓越成就。

2024年諾貝爾化學獎和物理學獎同樣都涉及了AI技術,但化學獎得主的研究核心是「預測蛋白質結構」,而AI在這裡僅作為輔助工具。AI的應用大大加速了蛋白質結構預測的進程,並證實了可以利用AI開發全新的蛋白質,這對未來的影響深遠,將促進新藥物的開發、疫苗的研製以及納米材料的創新。與此同時,AI不僅是理論探討的工具,還在分子層面的實際預測與設計中發揮了關鍵作用。

儘管研究中涉及到許多與化學無直接關係的部分,例如如何設計和調整AI系統AlphaFold,但總體而言,OT認為這是一項真正的研究創新。AI系統的設計與調教雖然屬於技術領域,但這些技術最終服務於化學領域的重大挑戰,這使得它們在研究中的應用更具突破性。這一創新無疑將在未來生物化學和醫學領域中產生深遠影響。

有趣的是,這次的三位得獎者本科背景都與化學無直接關聯。傑米斯·哈薩比斯是一位軟體工程師,他創立了DeepMind,後來被Google併購。約翰·江珀因對宇宙的熱愛開始學習物理和數學,2011年攻讀理論物理學博士時,為了節省有限的計算資源,他開發了更簡單且具創意的蛋白質動力學模擬方法,後來加入Google與哈薩比斯共同開發了AlphaFold。大衛·貝克在哈佛大學學習時攻讀的是哲學和社會科學,後來轉向細胞生物學,並在1990年代末開發出預測蛋白質結構的計算軟體Rosetta。三位得獎者均憑藉自己開發的軟體參加了CASP(蛋白質結構預測關鍵評估)競賽,並取得了優異成績。這三人的故事本身也非常鼓舞人心,說明只要懷抱興趣並願意投入,一定能在其中找到探索的途徑。

本文讓我們一起來仔細閱讀諾貝爾委員會如何詮釋今年的化學獎。


圖片來源:Nobel Price官方網站

本篇文章不僅供OT自我學習使用,也歡迎各位朋友轉載並註明原文網址。